Electric Drive Technologies Overview

Susan Rogers, Technology Development Manager

June 19, 2018

EDT Approach and Strategy

Today

- Market Awareness
- Sustainable Competitiveness

Future

Goals & Objectives

Research

- Early Stage Focus and Priorities
- Program Roles

Conclusion

- Direction
- Summary

Market Awareness

Current trends in electric vehicle (EV) architectures and applications:

- OEMs are moving to skate board and/or dedicated architectures for EVs
- Vehicle applications and platforms are expanding (small & large vehicles)
- PHEV (50 miles) and EV range (250+ miles) is increasing
- Faster, high power charging (350+ kW) is essential
 - → Result: Higher vehicle voltages >600V

Market Awareness

Issues and challenges

- Significantly higher power levels:
 - Higher power level systems are needed for broader range of vehicle applications
- Limited space:
 - PHEVs need electric and internal combustion propulsion systems packaged within the existing allocated vehicle propulsion space
- High costs:
 - current technologies are too expensive for mass market adoption

Very limited space under the hood of 2018 Honda Accord PHEV

Source: Energetics

Sustainable Domestic Competitiveness

Necessary elements to have and maintain leadership:

- Early stage research to provide leading edge knowledge and enable new solutions
 - Technology innovations
- Applications knowledge to institutionalize technology
 - Basic design, packaging, and manufacturing
- Mass market competitiveness
 - Low margin and high volume

Leadership is only sustainable if industry can master all elements!

National Laboratory Research (Source: ORNL)

Electric Motor Serial Production (Source: GM)

u.s. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy

Goals & Objectives

Mission

Accelerate the innovation of electric drive technologies to enable a large market penetration of electric drive vehicles

2025 Goal

A 100 kW electric traction drive system at 1/2 the cost (\$6/kW), 1/10 the volume (33 kW/L), and 2X useful life (300,000 miles) compared to 2015 baseline

2025 Targets (versus 2015)		
Cost	\$6/kW (50% reduction)	
Power Density	33 kW/L (843% increase)	
Power Level	100 kW (100% increase)	
Reliability/Lifetime	300,000 miles (100% increase)	

Power Electronics Priorities for 2025

- Deconstruction of traditional component boundaries enables simplification
- Component integration
- Circuit board-based 3D packaging
- Additional feature integration
- Device application
 - Full automotive operating range characteristics
 - Optimal operating strategies
- In board device fabrication

Inverter \$2.7/kW @ 100 kW/L

EDT Power Electronics Research

Miniaturization of power electronics to enable wider vehicle applications while reducing cost

- Development of board-based power electronics
 - Planar construction
 - Integration of bus structure, capacitor, and module substrate
 - Gate drives, power modules, and thermal systems
- Full utilization of emerging device capabilities
 - Decrease design margins and increase reliability
 - Ultra conducting copper is a key enabler
 - High performance computing accelerates innovation

Result: One liter 100kW inverter at a cost of \$270 by 2025

Electric Motor Priorities for 2025

Materials innovations and understanding of application improvements

- Electrical steels for higher efficiency
- Nanocarbon-based conductors
- Non-RE magnets
- Soft magnet materials

\$3.3/kW @ 50 kW/L

Stator
Core
Systems

Rotor
Core

Electric Drive Motor

Winding

Systems

Sensors

Magnets

EDT Electric Motor Research

Reduce cost by utilizing fundamentally new materials

- Improved capabilities and performance
 - Flectrical steels
 - Ultra conducting copper
 - Heavy rare earth free magnets
 - Low cost, high voltage insulating materials
- Application in motor design innovations
 - Understand new material properties and their use
 - 30-50% improvement in electrical and thermal conductivity
 - High performance computing for more accurate modeling and optimization

Result: <14 liter 100kW motor @ \$330 by 2025

International Annealed Copper Standard (IACS): Conductivity of Cu (20° C, 5.8x10⁷ S/m = 100%)

C. Subramaniam, et. al., Nat. Commun. (2013)

2025 EDT Cost Walk Strategy

Power Electronic Cost Reduction	Goal (\$330 @100 kW)	
Multi Physics Integration	Board based design	
Gate Drive & Control Device Improvement	Chip set component reduction and functional improvement for WBG	
WBG Device Application w/Full Utilization	Understanding of component drivers of failure and application profiles	
High Frequency Operation	Control strategy for higher motor efficiency and reduced passive components	
Imbedded Current Sensor	Board based fabricated current sensor	
Total Unit Savings	\$259	

Electric Motor Cost Reduction	Goal (\$270 @100 kW)	
Gen 1, then Gen 2 Covetic Steel and Ultra Copper	Development of new steel and copper	
Atomic Level Understanding of Electrical Steel	Characterization Method for Electrical Steel provides understanding at atomic level	
Heavy Rare Earth Free Magnets	Development of Heavy Rare Earth Free Magnets	
Elimination of Magnets	Development of alternative motor	
Total Unit Savings	\$114	

Direction

Roadmap defines the pathway to 2025 targets

Chevrolet Bolt

Future Mobility Design Concept

2025 Targets (versus 2015)			
Cost (\$/kW)	50% reduction		
Power Density (kW/L)	843% increase		
Power Level	100% increase		
Reliability/lifetime	100% increase		

Advanced Multiphysics Integration Technologies (ELT079)

New substrates and interconnects for high power density

Source: Indiana IC

Compact signal and power transfer for gate drivers

Energy Efficiency &

Renewable Energy

Power Electronics Thermal Management (ELT078)

- Self-contained passive two-phase system enables high power density without conventional water-ethylene glycol (WEG) liquid cooling. Eliminates hoses, pumps and WEG coolant leaks.
- Research focuses on technologies for compact passive boiling below critical heat flux and compact modular condenser technologies.

Source: NREL and John Deere

Innovative Chargers and Converters (ELT077)

Integrated wireless charger; wireless charging capability with the addition of just a coil and a resonant network, utilizing the traction inverter.

Integrated wireless charger circuit Source: ORNL diagram

Illustration of example cross-sectional view of the evaporator vessel showing flow of two-phase fluid

Advanced HPC Modeling of Motors and Materials (ELT049)

Improve motor modeling fidelity and facilitate optimization on HPC systems

Standard magnetic material (left) & improved model (right)

Magnetic flux density of a synchronous reluctance motor simulated using OeRSTED (left) and commercially available software (right)

Non-Rare Earth Electric Motors and Ultra Conducting Copper (ELT074)

 Rotary transformers for wound rotor synchronous motors

Reduction in mass and volume

with UCC

Rotary Transformer Concept

UCC composite

	Cu	CNT
Electrical Conductivity (MS/m)	59.6	100
Thermal Conductivity (W/m-K)	400	4000 W/m-K
Current Density (A/cm²)	10 ⁶	108

Electric Motor Thermal Management (ELT075)

- Produced data and physics-based model for stator-to-case thermal resistance.
- Collaboration to improve accuracy and prediction of electric motor performance with less product development time and cost.
- Published results improve access to data and tools for motor designs with increased power density without having to resort to overly conservative estimates.

Source: NREL and UQM Technologies

Cross-section view highlighting a stator-tocase interface and edge view of one sample lamination showing a serrated edge

Drivetrain Performance Improvement Techniques (ELT054)

Improve efficiencies in the low efficiency regions of operation by varying the modulation schemes

BMW i3 efficiency improvement potential

Government Partnering with Industry

Summary

- Market awareness: radical change has and still is occurring moving to dedicated, flexible, electrified skateboard architecture
 - Power density and cost are critical success factors
- Industrial competitiveness factors (R&D, application knowledge, mass production ability) need to be considered to ensure success
- Key elements of EDT R&D to reach 2025 targets
 - Deconstruction of traditional component boundaries and simplification of design
 - Improvements of existing and application of new materials

	2025 Targets (100kW System)	
Description	Cost	Volume
Power Electronics	\$2.70/kW	100 kW/ℓ
Electric Motor	\$3.30/kW	50 kW/l
Electric Traction Drive	\$6.00/kW	33 kW/ℓ

Information Sources

- ☐ FY 2017 Advanced Power Electronics and Electric Motors Annual Progress Report:
 - https://www.energy.gov/sites/prod/files/2018/05/f51/Electrification_ FY2017_APR_Final.pdf

- Electrical and Electronics Technical Team Roadmap:
 - https://www.energy.gov/sites/prod/files/2017/11/f39/EETT%20Road map%2010-27-17.pdf

- 2017 U.S. DRIVE Highlights of Technical Accomplishments Report:
 - http://www.uscar.org/commands/files_download.php?files_id=476

EDT Contact Information

Technology Manager:

Susan Rogers

Susan.Rogers@ee.doe.gov

https://www.energy.gov/eere/vehicles/vehicletechnologies-office-electric-drive-systems